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Abstract

Determination of homogeneous mixing of the active pharmaceutical ingredient (API) is an important in-process control within the manufacturing
o
m
a
f
h
a
©

K

1

c
s
i
t
n
s
i
t
p
t
b
fi
h

0
d

f solid dosage forms. In this paper two new near-infrared (NIR) based methods were presented; a qualitative and a quantitative method. Both
ethods are based on the calculation of net analyte signal (NAS) models which were very easy to develop, specific with respect to the API

nd required no additional reference analysis. Using a well-mixed batch as a ‘golden standard’ batch, control charts were developed and used
or monitoring the homogeneity of other batches with NIR. The methods were fast, easy to use, non-destructive and provided statistical tests of
omogeneity. A mixing study was characterized with the two methods and the methods were validated by comparison with traditional HPLC
nalysis.

2005 Elsevier B.V. All rights reserved.
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. Introduction

An important unit operation in the production of a pharma-
eutical solid dosage form is the mixing of the powder con-
tituents. One of the primary objectives of the mixing process
s to obtain a homogeneous mixing of the active pharmaceu-
ical ingredient (API) in the formulation. The homogeneity is
ormally determined by removing a small number of powder
amples from the powder mixer with a probe thief and send-
ng the samples to a quality control laboratory distant from
he process line for, e.g. high pressure liquid chromatogra-
hy (HPLC) analysis. The API content in the samples and
he relative standard deviation (R.S.D.) of the API content
etween the samples is then obtained and compared to speci-
ed values in order to decide wherever the batch is sufficiently
omogeneous [1]. This procedure is slow and is not suited

∗ Corresponding author.
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for process control of the mixing process to obtain the high-
est possible homogeneity. Also a limited number of samples
are used which makes a full characterization of homogeneity
difficult.

Therefore, near-infrared (NIR) based spectroscopic methods
which are non-destructive, fast and require little resources have
been proposed [2–10]. NIR has been applied in many different
manners. Samples were removed from the system and measured
with NIR (off-line) [2,4]. This method faces some of the classical
powder sampling problems where large variance is introduced
when inserting a sample thief into the powder bed and removing
a sample. In other papers, diffuse reflectance probes have been
inserted directly into the powder bed at a fixed position (in-line)
[5,6] or the mixer was fitted with quartz windows through which
monitoring could be applied from outside the mixer (semi1 non-
invasive) [7]. These types of methods only monitor the powder

1 The application was not truly in-line because the mixer had to be stopped
to perform monitoring with a diffuse reflectance probe that was moved around
from window to window.
731-7085/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpba.2005.10.009
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bed at one or a few points and only provide information about
the homogeneity in these particular positions assuming that the
point or points are representative for the entire powder bed. In
cases with ‘dead spots’ or de-mixing phenomena this assumption
would not hold.

Many different data analysis methods have been applied to
the spectral data in order to derive the optimal mixing time.
The span of methodologies are from simple qualitative meth-
ods looking for absence of changes in the spectra, i.e. moving
block [5], dissimilarity indexing [2], principal component anal-
ysis (PCA) [4], soft independent model class analogy (SIMCA)
[7] and bootstrapping techniques (BEST) to quantitative calibra-
tion models using partial least squares (PLS). The qualitative
approaches evaluate only spectral homogeneity, i.e. variation
between spectra in time or position but are not specific for the
analyte. The PLS method on the other hand, directly evaluates
the concentration homogeneity of the analyte of interest. Some
of the qualitative methods compare the measured spectra with a
set of “target” spectra of a homogeneous mixture.

In the present paper we introduce a new method for mon-
itoring homogeneity of powder mixtures by testing the vari-
ation and the level of the API content over the mixer. The
API content is based on the net analyte signal (NAS) value
of NIR spectra. The NIR spectra are recorded directly in the
mixer using a fibre based handheld diffuse reflectance probe.
Thus, by just sticking the probe in the mixer a number of
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2.1. Mixing and determination of a random mixture

Mixing is the treatment of two or more compo-
nents in such a way, that the individual particles
of the different components in the mixture are
evenly distributed and lie adjacent to each other
within the highest possible probability [11].

A perfect mixture between two or more components would
be one in which each sample contains exactly the proper amount
of each of the components. If, e.g. two components were mixed
(A and B) in a 1:1 relationship a perfect mixture would be when
every second particle would be A. Such a perfect mixture is
not achievable but a random mixture is [11] and the aim of a
pharmaceutical mixing process is to achieve a random mixture
which then would stand for a homogeneous mixture. An exam-
ple of a random mixture was presented by Muzzio et al. [12]. A
random mixture can be considered as a mixture where all sam-
ples removed from the mixture would be normally distributed
with same mean (µ) and standard deviation (σ) regardless from
where in the mixture the sample was removed.

2.2. Variance component model
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imes, a measure of homogeneity is obtained that is statistically
alidated.

A qualitative approach of the method is suited for early devel-
pment studies when only a few batches are available, and
urther on in the development stage, calibration can be used to
ake the method quantitative. In both methods a ‘golden batch’

s chosen and two control charts are developed based on mea-
urements of the ‘golden batch’. In the two control charts the
ariance and the mean are observed. With the proposed method,
mixing process is examined. In order to validate the proposed
IR methods control charts are also developed using values
btained from traditional HPLC analysis of powder samples.
esults from four independent batches are then plotted in the
ontrol charts and the results are compared to NIR. Variance
omponents in the measured signal are described and finally we
how how many spectra need to be recorded in order to not make
alse conclusions about homogeneity.

. Theory

In this theory section we will first discuss the mixing of phar-
aceutical powders and the idea of a random and homogeneous
ixture. Then the different sources of variation in analytical
easurements of homogeneity are discussed. The net analyte

ignal approach used to relate a multivariate NIR measurement
o the API content is discussed shortly. Afterwards we first
ntroduce the qualitative approach for monitoring homogene-
ty. Finally we will also show how a quantitative model can be
eveloped in which actual concentrations of the API are moni-
ored.
In order to understand the total variance the following vari-
nce component model is proposed for a NIR based method:

2
total = σ2

analysis + σ2
sampling + σ2

random mixture + σ2
heterogeneity (1)

The variance due to the analysis, σ2
analysis, e.g. repeatability,

s low for modern Fourier-transform FT-NIR instruments with
ooled detectors.

The sampling procedure is recognized as a major contributor
f error in the final result when samples are withdrawn with a
ample thief [12]. When using a NIR probe, the sampling vari-
nce component, σ2

sampling is believed to be affected by some
f the same phenomena as sample thieves, e.g. transportation of
owder from higher placed layers when penetrating the mixture.
ome studies recommend sample thieves with front sampling

nstead of side port sampling. A NIR probe can be compared
o a front sampling thieve. When the NIR probe is inserted into
he powder mixture at a given position, the probe can be tilted
lightly prior to the measurement in order to measure an undis-
urbed sample. This method has been tested in our laboratory
nd it appears to be an efficient way to avoid sampling material
hich has been transported with the probe during insertion.
Another advantage of NIR is that no sample preparation is

equired which in return minimize sampling error. Finally, using
proper pre-processing and wavelength selection of the NIR

pectra would minimize the influence of artifacts in the spectra
rom varying particle sizes or other physical parameters.

The variance component due to the random mixture,
2
random mixture, is the inherent variance one observes in a ran-
om mixture. This is the variation in API concentration between
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several measurements inside the random mixture. This variation
greatly depends on the sample size [11]. An increase in sample
size will show a decrease in this variance component.

The last variance component σ2
heterogeneity (the mixing compo-

nent) represents the degree of heterogeneity. In a random mixture
the variance due to heterogeneity will be zero. Thus in monitor-
ing homogeneity, the actual test is whether the σ2

heterogeneity = 0.

2.3. Net analyte signal (NAS)

When the analyte of interest is absorbing in the near-infrared
(NIR) wavelength region and the shape of the analyte spectrum
and interfering constituents spectra is different, a net analyte
signal (NAS) vector, which is unique for the analyte, can be
derived. The NAS vector is defined as the part of the sample
spectral vector that is orthogonal to a subspace called the inter-
ferent space. The NAS vector is unique for the analyte of interest
in the given mixture of interferents. The interferent space is
spanned by spectral vectors of the interfering constituents in the
sample matrix, i.e. all other components except for the analyte
of interest. In order to construct a robust NAS vector sufficient
variation should be present in the NIR measurements of inter-
ferents mixtures. This can be assured by manufacturing batches
of interferents mixtures after designed experiments.

2.4. Notation
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Next the NAS regression vector is computed with a set of
model spectra (Rmod). Pure analyte spectra or spectra of sam-
ples with the interfering constituents and the analyte can be used.
The latter is preferred because the spectral response of the ana-
lyte in presence of other constituents might be different than
the spectrum of the pure analyte alone. With the anti-projection
matrix and the model spectra the orthogonal part to the interfer-
ent space can now be computed

B = AR · Rmod (3)

The B is a J × Imod matrix with Imod vectors which all are
orthogonal to the interference space and point more or less
in the same direction. The average vector b is used to define
the unique NAS direction and is called the NAS regression
vector

b =
∑Imod

i=1 Bi

Imod
(4)

With the NAS regression vector, the NAS value of a sample
spectrum (r, a J × 1 vector) can be computed simply as the score
of the projected spectral vector onto the NAS regression vector

NAS = rTb (5)
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The following notation is used during the presentation of
quations. Boldface capital characters denote matrices, bold-
ace lower-case characters denote vectors and lower-case italic
haracters denote scalars, superscript T denotes the trans-
osed matrix or vector and the superscript + denotes the
oore–Penrose generalised inverse of a matrix. The matrix IJ

s the J × J identity matrix.

.5. Calculation of the NAS value of a spectrum

Using a set of NAS vectors, a NAS regression vector can be
alculated. With the NAS regression vector the net analyte signal
alue or simply the net analyte signal of a sample spectrum can
e computed. The NAS is directly proportional to the analyte
oncentration [13] which makes this value a potential candidate
o be used to evaluate the distribution of analyte in a set of
amples.

To compute the NAS regression vector, first the interfer-
nce space needs to be defined. Pure component spectra of the
nterferents can be used to span the interferent space. In our
xperience [14–16] it is better to use spectra of blank samples,
.e. mixture samples of the interfering constituents only.

First the anti-projector (AR) is constructed using a set of blank
pectra (R−k)

R = (IJ − R−kR+
−k) (2)

R−k is a J × Ib matrix with Ib blank spectra measured at J
hannels. The subscript −k indicates that the spectra does not
ontain NIR response from the analyte k. R+

−k is the pseudo-
nverse matrix of the blank samples, an Ib × J matrix.
.6. Development of a qualitative model based on NAS
alues

In the early stages of a drug development program dif-
erent formulations are assessed. Development of quantitative
IR models using several calibration batches for each formu-

ation would require many resources. A qualitative method that
equires a minimum of resources is therefore beneficial. The pro-
osed method requires two batches: (1) a placebo batch and (2) a
atch with API that is homogeneous mixed, i.e. a ‘golden batch’
here the σ2

heterogeneity = 0. In the following a stepwise proce-
ure is described how to develop the qualitative method and
ontrol charts. Pre-processing method and wavelength selec-
ion of the NIR spectra are chosen based on the SE indicator
14].

Step 1: A placebo batch is measured with the NIR probe. The
spectra are used to calculate the anti-projector (Eq. (2)).
Step 2: A batch with 100% of the concentration in the final
drug product is prepared and mixed until homogeneity and
then measured extensively with the NIR probe. This batch is
named ‘golden batch’ in the text.
Step 3: A few spectra from the ‘golden batch’ are used as
model spectra (Rmod) and the NAS regression vector is cal-
culated (Eqs. (3) and (4)).
Step 4: The NAS values of the remaining spectra from the
‘golden batch’ are calculated with Eq. (5).
Step 5: The mean NAS value NASgb and variance s2

total NAS,gb
of the NAS values are determined.
Step 6: Finally two control charts are constructed; a variance
and mean chart.
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2.7. Development of control charts for qualitative NAS
model

In this section are the assumptions and equations presented
for limits in the control charts. Note that since it is a qualitative
approach, it is not possible to test whether a new batch is on
target with respect to concentration of API; it is only possible to
test whether the batch is equal to a ‘golden batch’. Two charts
are developed; a variance chart and a mean chart.

2.7.1. Variance chart
In the variance chart the variance for a new batch is compared

statistically to the variance of the ‘golden batch’. Comparison
is done using the ratio between the variance of the new batch
and the variance of the ‘golden batch’. The ratio of variances
follows an F-statistic:

s2
total NAS,new

s2
total NAS,gb

∝ F(α,Nnew−1,Ngb−1)

where Ngb is the number of spectra used to calculate the ‘golden
batch’ variance.

A one-sided F-test is used because it is assumed that in mon-
itoring homogeneity, the actual test is whether σ2

heterogeneity = 0.
The assumption is that the ‘golden batch’ has zero heterogene-
ity and if the new observation would deviate from the ‘golden
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be used for the t-test to detect whether the operator put too much
or too little API in the mixer (compared to the ‘golden batch’).
The control limits for the mean chart are then:

control limits = 0 ± t
(α

2
, Nnew + Ngb − 2

)
(9)

The critical step in this method is in Step 2. It is stated that a
batch is mixed to homogeneity (‘golden batch’) and then mea-
sured extensively with NIR. One approach to identify the point
of homogeneity could be to make a temporary NAS model. First
the anti-projector is calculated from the placebo batch spectra.
Carry out a few minutes of mixing of the calibration batch and
measure a few NIR spectra. These spectra are used to calculate a
temporary NAS regression vector. Then continue mixing of the
calibration batch. At different time points the mixer is stopped
and high number (e.g. 50) NIR spectra are recorded. The NAS
values of the spectra are calculated with the temporary NAS
regression vector. By simply plotting the variance over time the
point of homogeneity can be identified as time point with lowest
variance.

2.8. Development of a quantitative model based on NAS
values

When a final formulation has been chosen during the R&D
development phase more calibration work can be added and a
q
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atch’ then σ2
heterogeneity,new > 0. The upper control limit is then

alculated using the following equation:

pper control limit = s2
total NAS,gb × F(α,Nnew−1,Ngb−1) (6)

here the critical value can be found in an F table.
Although the variance of a new batch is expected to be equal

o or higher than that of the ‘golden batch’, in some cases, a
ower variance could be found. A lower variance does not signal
or heterogeneity, but for model incompetence or probe fouling.
herefore, do we also calculate a lower limit which is called the
arning limit:

arning limit = s2
total NAS,gb × F(1−α,Nnew−1,Ngb−1) (7)

.7.2. Mean chart
If the two variance of the new batch is equal to the ‘golden

atch’, the mean of the new batch can be compared to the mean
f the ‘golden batch’. This is done by computing the t-value for
he new batch and then plot the t-value in the mean chart and
ompare to the critical value obtained from a table of critical
alues of t:

-value = NASnew − NASgb

s
√

1
Nnew

+ 1
Ngb

(8)

here s is calculated from:

2 = (Nnew − 1)s2
total NAS,new + (Ngb − 1)s2

total NAS,gb

Nnew + Ngb − 2

The critical t-values can be found for a α confidence level
nd (Nnew + Ngb − 2) degrees of freedom. A two-sided test will
uantitative model between the NIR spectra and the API con-
entration developed. A major benefit of a quantitative model
s that numbers are now expressed in concentration of the API
hich is comparable to the standard regulatory methodologies.
lso now the mean can be compared to the target content of API

nstead of mean of ‘golden batch’.
The development of the quantitative method is described by

he following steps:

Step 1: First a placebo batch is prepared and measured with the
NIR probe. The spectra are used to calculate the anti-projector
(Eq. (2)).
Step 2: A set of calibration batches spanning a fair API con-
centration range are prepared, e.g. 70, 85, 100, 115 and 130%
of the concentration in the final drug product. The batches are
mixed until they are homogeneous and measured extensively
with the NIR probe. The spectra are split into a calibration set
and a test set.
Step 3: The calibration spectra from each batch are averaged
to one calibration spectrum for each calibration batch. Each
calibration spectrum is assigned a reference value which is the
average API concentration in the particular calibration batch.
This value is known from the preparation of the calibration
batch [8].
Step 4: A few spectra from one of the calibration batches are
used as model spectra (Rmod) and the NAS regression vector
is calculated (Eqs. (3) and (4)).
Step 5: Now the NAS value of the average calibration spectra
and some extra placebo spectra is calculated (Eq. (5)). These
extra placebo spectra should not have been used to construct
the anti-projector in Step 1.
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• Step 6: The NAS values of the average calibration spectra are
plotted against their reference value in a NAS value versus
concentration plot. A straight line is fitted to the points in a
least square sense. With the equation for the line (calibration
model) the API concentration can now be calculated for a
given spectrum [17].

• Step 7: With the calibration model the API concentration c is
predicted in all test set spectra.

• Step 8: The variance s2
total c,gb is determined of all concentra-

tion predictions as the pooled variance from all test set data.
Because all calibration batches are assumed to be homo-

geneous all concentration predictions from the test set can
be used to calculated a pooled variance which provides more
degrees of freedom:

s2
total c,gb = s2

pooled

=
∑N1

i=1(c1,i − c̄1)2 + ∑N2
i=1(c2,i − c̄2)2 + · · ·

(N1 − 1) + (N2 − 1) + · · ·
(10)

where c̄1 is the average concentration of N1 predictions from
calibration batch 1.

• Step 9: A variance and a mean chart is developed and used
for monitoring of future batches.

2.9. Development of control charts for quantitative NAS
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Table 1
Mixture composition

Component g % (w/w)

API 100 10
Microcrystalline cellulose 200 20
Tablettose 677.5 67.75
Magnesium stearate 7.5 0.75
Talc 15 1.50

Sum 1000 100

An extended length fibre optic sampling probe with pistol grip
was used. The probe was fitted to the MPA with a 1.5 m optical
fibre. The probe head diameter is 14 mm and the optical window
has a diameter of 4 mm. The length of the probe is 325 mm. A
resolution of 8 cm−1 was used. The spectral range from 4000 to
12 794 cm−1 was scanned. As background, a Spectralon disc was
used with 32 co-added scans per spectrum. For sample spectra 16
co-added scans per spectrum were used. The acquisition time per
sample spectrum was approximately 8 s which is a practical time
for a steady handheld measurement. The reflectance signal from
the sample in front of the probe was detected with an InGaAs
detector.

3.2. Reference analysis

Powder samples that were removed from the batches were of
approximately 300 mg of size. The samples were analyzed with
a HPLC method. First the samples were dissolved followed by
injection into the HPLC system which used UV-detection at
275 nm, a C18 column and a mobile phase consisting of a salt
buffer and acetonitril.

3.3. Composition of pharmaceutical mixture

The analyte of interest was the active pharmaceutical ingre-
d
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.9.1. Variance chart
For the quantitative NAS model, also the spread in the mea-

urements is compared to the spread found for the ‘golden
atches’ in the same way as was presented for the qualitative
AS model. The limits are calculated in the same way substi-

uting variance of NAS values with the pooled variance of the
oncentration predictions

s2
total c,new

s2
total c,gb

∼ F(α,Nnew−1,Ngb−1)

.9.2. Mean chart
With the quantitative model the mean of a new batch can

e compared to the target concentration of the product (instead
f comparing to the mean a ‘golden batch’ of which the exact
PI concentration is unknown). This implies that the mean chart
ow compares whether the average concentration is within target
imits.

The mean chart is constructed like a Shewart chart [18] and
he control limits are then

ontrol limits = target ± t(α/2,Ngb−1)
stotal c,gb√

Nnew
(11)

. Experimental

.1. NIR measuring techniques

All NIR measurements were measured with the same Bruker
T-NIR spectrometer, MPA (Multi Purpose Analyzer) [19].
ient (API). For reasons of secrecy the chemical identify of the
PI cannot be revealed. All batch sizes were 1000 g and the

omposition is listed in Table 1. All mixing was performed in a
rum mixer.

.4. Experiments

In Table 2 is a list of the batches that were used. In the
alibration batches the API was interchanged with microcrys-
alline cellulose and tablettose while maintaining the weight
atio between the microcrystalline cellulose and tablettose.

.5. NIR measurements and samples analyzed with
eference method

Ninety spectra were recorded in the placebo batch. From each
f the calibration batches, 50 spectra were recorded. In the mix-
ng experiment the mixer was stopped at various time points, the
id was removed and 50 spectra were recorded at each time point.
n all experiments an evenly spatial placement of the probe in the
owder mixture was attempted. Samples were also removed for



E.T.S. Skibsted et al. / Journal of Pharmaceutical and Biomedical Analysis 41 (2006) 26–35 31

Table 2
Batch overview

Name Description and sampling Use

Placebo batch No API is added Calculating of the anti-projector
70, 85, 100, 115 and 130%

calibration batches
Varying amount of API from 7 to 13% (w/w). Fifty NIR spectra/batch.
Thirty samples for HPLC analysis/batch

Calibration and calculating control limits

Mixing batch A batch with 10% (w/w) API. Fifty spectra/time point. Several time
points measured during mixing

Demonstrate how the methods could be used
to monitor a mixing process

Validation batches (four batches) Each was with 10% (w/w) API concentration. The batch differences
were mixing time and mixing order. Thirty NIR spectra/batch. Twelve
samples for HPLC analysis/batch

Used to validate the NIR methods

HPLC analysis in the calibration batches and in the validation
batches.

3.6. Data acquisition and analysis

All spectra were collected using the OPUS 4.2 software for
the NIR instrument [20]. The spectra were converted from the
OPUS format to Jcamp and imported into MatLab 6.5 [21] using
in-house written routines. All data analysis was performed in
MatLab using in-house developed algorithms.

4. Results and discussion

In this section first a qualitative model and control charts
are developed. The mixing data are applied to the qualitative
model. Then a quantitative model is developed and the mixing
data assessed. The NIR models are validated by comparison with
HPLC. Finally, the influence of number of spectra on the method
is evaluated.

4.1. Qualitative model

4.1.1. Model and control charts
Twenty-three placebo spectra were used to develop the anti-

projector AR (see Eq. (2)). A calibration batch with 10% (w/w)
A
t
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The means of time points 35 and 40 min are indicated with
(×) since the equal variance requirement for the t-test was not
fulfilled anymore and thus the results cannot be trusted.

4.2. Quantitative model

4.2.1. Model and control charts
To develop the quantitative model another four calibration

batches were prepared, i.e. with 7, 8.5, 11.5 and 13% (w/w)
API. In all five calibration batches (including the 10% (w/w)
batch used in the qualitative model) 50 spectra were recorded
when they were homogeneously mixed. The spectra from each
batch were split into 20 spectra that were used to construct an
average calibration spectrum for each calibration batch and 30
spectra called test set spectra. Also after recording of the spectra,
30 powder samples (each approximately 300 mg) were removed
from every calibration batch and subject to HPLC analysis. Now
the anti-projector was developed. Five spectra from the 130%
batch were used to calculate the NAS regression vector. The
average calibration spectra from each of the five calibration
batches and the NAS regression vector are depicted in Fig. 2.
The methodology of using average spectra of powder samples
and assigning the nominal batch concentration was first demon-
strated by Berntsson et al. [8]. In this study it showed to be a

F
t
f
b

PI was prepared. After mixing, 50 spectra were recorded with
he probe in the mixer. Five spectra were used as model spectra
o calculate the NAS regression vector. Using the NAS regres-
ion vector the NAS values were calculated for the remaining
5 spectra. The limits for the variance and mean charts were
alculated.

.1.2. Mixing data
A batch with a composition of 10% (w/w) API was prepared.

uring the mixing of the batch the mixer was stopped at time
oints 16, 20, 25, 30, 35 and 40 min. At each time point 50
pectra were recorded in the mixer. The variances and means
ere calculated and plotted in the control charts (Fig. 1).
The results showed that at time points 16, 20, 25 and 30 min

he variance was comparable to the ‘golden batch’. At time
oints 35 and 40 the variance was higher then in the ‘golden
atch’ showing that de-mixing took place. The means from time
oints 16, 20, 25 and 30 were compared to the ‘golden batch’
n the mean chart. They were all within the limits and therefore
ot different from the mean of the ‘golden batch’.
ig. 1. Mixing experiment data plotted in variance and mean chart using qualita-
ive method. The mean values symbolized with (×) indicate that the assumption
or the t-test is not fulfilled because the variance is different from the ‘golden
atch’.
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Fig. 2. The five average calibration spectra and the NAS regression vector (bolded line) (left). The API had a characteristic peak near 6000 cm−1. This feature was
easily recognized in the calibration spectra and the NAS regression vector (right).

very easy, fast and precise method for making the quantitative
calibration models.

The NAS values of the average calibration spectra and 20
extra placebo spectra were plotted against their reference values
(symbolized with circles in Fig. 3) and a straight line was fitted to
the points in a least square sense (line in Fig. 3). The correlation
coefficient was 0.9998. The NAS values of test set spectra were
also plotted in order to demonstrate the variance of the API
within each batch (symbolized with dots in Fig. 3).

Using the calibration model concentration predictions were
obtained from the test set spectra. The pooled variance was cal-
culated and control charts made.

F
a

4.2.2. Mixing data
The concentration predictions of the mixing data were cal-

culated. Variances and means were plotted in the variance chart
and mean chart (Fig. 4).

The variances at time points 16, 20 and 25 min were all within
the limits and at 25 min the variance was lowest. The variances
at 30, 35 and 40 min were higher then the ‘golden batches’. This
behaviour of the variances clearly shows a de-mixing behaviour,
i.e. optimal mixing time existed around 20–25 min and further
mixing worsened homogeneity.

F
t
f
b

ig. 3. NAS values vs. concentration plot. The open circle symbolizes the aver-
ge calibration spectra and the dots symbolize the test set spectra.
ig. 4. Mixing experiment data in variance chart and mean chart using quantita-
ive model. The mean values symbolized with (×) indicate that the assumption
or the t-test is not fulfilled because the variance is different from the ‘golden
atches’.
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The means at 16, 20 and 25 min were also within the target
limits. At 25 min the batch was on target with a variance compa-
rable to the ‘golden batch’. This optimal mixing time was also
identified using the qualitative model.

The results showed that with the qualitative NAS method
it was possible to monitor API homogeneity though no calibra-
tion model with reference values was developed. The qualitative
method required fewer batches and is therefore a strong candi-
date as method in the early development stages. The advantage
of the quantitative model over the qualitative approach was that
tighter limits were obtained due to the more degrees of free-
dom and calculations were in concentration values. Also the
mean could be compared to the declared target content of the
pharmaceutical product. These differences make adaptation into
a highly regulated manufacturing environment easier and the
interpretation is straightforward.

Secondly, by making a quantitative calibration line, non-
linear behaviour can be detected and more confidence can be put
into the pre-processing method and wavelength selection, this is
not possible in the qualitative model. With the current formula-
tion no such problems were observed but this is not always the
case.

4.3. Validation of proposed methods
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Fig. 5. Variances and means of HPLC values from validation batches in variance
and mean charts.

4.3.2. Validation batch evaluation using NIR
Concentration predictions of the NIR spectra from the four

validation batches were calculated. Variances and means were
calculated and plotted in the control charts (Fig. 6).

The variances for batches 2 and 4 were within the upper con-
trol limit and the warning limit. The variances of batches 1 and
3 were below the warning limit signalling model incompetence
as in the HPLC variance chart.

The mean of batch 1 was on target but due to the fact that
the variance of batch 1 was different from the ‘golden batch’
the mean could not be compared to the ‘golden batch’ using t-
statistics. The means of batches 2, 3 and 4 were below the lower
control limit and smaller then target. This was also observed
using HPLC.

The conclusions when using NIR or HPLC were comparable,
i.e. the variances of batches 2 and 4 were similar to the ‘golden
batch’ and their means below the target value. Also the variances
of batches 1 and 3 were below the warning limit signalling model
incompetence.

When the control limits for the HPLC values were compared
to the control limits for the quantitative NIR method it was clear
that there were big differences. The reason was the effective
sample size in the two methods which was very different. In the

F
p

To validate the NIR methods comparisons were made
etween traditional HPLC and NIR using four different vali-
ation batches. All four validation batches were prepared with
0% (w/w) API. The differences between the batches were the
rder of mixing the constituents and the mixing time. When mix-
ng was finalized, 30 NIR spectra were recorded and 12 powder
amples were removed for HPLC analysis from each batch. First
esults from HPLC will be demonstrated and then compared to
IR results.

.3.1. Validation batch evaluation using HPLC
From the 100% calibration batch (‘golden batch’) 30 powder

amples of 300 mg were removed and subject to HPLC analy-
is. A variance chart was developed. The limits were calculated
sing Eqs. (6) and (7), substituting s2

total NAS,gb with s2
total HPLC,gb

nd a mean chart was developed using 10% (w/w) as target and
q. (9) to calculate the upper and lower control limits, substitut-

ng s2
total c,gb with s2

total HPLC,gb.
Now for each of the four validation batches the follow-

ng was done; the variance and mean of the 12 HPLC values
ere calculated and plotted in the variance and the mean chart

Fig. 5). Outliers were identified using a Grubbs test (α = 0.05)
nd removed prior to the calculation of the variance and mean.

The variances of batches 2 and 4 were within the limits and
hereby equal to the ‘golden batch’. The variance of batches 1
nd 3 was below the warning limit signalling model incompe-
ence. The means of the validation batches were all lower then
he target value. The means of batches 1 and 3 (symbolized with

) could not be compared with the ‘golden batch’ using the t-
tatistic because their variances were different from the ‘golden
atch’.
ig. 6. Variances (upper figure) and means (lower figure) of concentration NIR
redictions for the validation batches.
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Fig. 7. Control limits as a function of number of samples used to calculate limits.

HPLC method the average sample weight was approximately
300 mg. The effective sample size in a NIR measurement is
defined as the amount of sample that contributes to the spectrum.
It is difficult to quantify the effective sample size for a NIR
spectrum but some methods have been proposed [22]. Effective
sample size ranged from 34 to 492 mg/cm2 illuminated spot area
in some typical pharmaceutical powders. The NIR probe used in
this study had a spot area of 0.13 cm2 which would correspond
to effective sample sizes from of 5 to 64 mg.

4.4. Control limits dependency on number of samples

The ultimate method to characterize blend homogeneity
would be a technique where the entire batch would be sam-
pled. In practice this is not possible and one has to consider how
many times it is needed to stick the probe into the powder bed
in order to make a good characterization of the homogeneity.

When the ‘golden batch’ is measured with NIR, many spectra,
e.g. 50–100 should be used. If new batches are evaluated at many
time points and in a manufacturing environment these numbers
of spectra are maybe not practical. Therefore the influence of
number of spectra was examined.

In order to show how the number of spectra would influ-
ence the control limits and the conclusions one derives from the
results, spectra from the mixing experiment were used. In the
m
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(1) Ten values were picked randomly from the original 50
concentration predictions. After a value was picked it was
“returned” meaning that each value had the same proba-
bility of being picked every time a value was selected, i.e.
bootstrap resampling [23].

(2) The mean c̄ and variance s2
total,c were calculated from the 10

values.
(3) Steps 1–2 were repeated 100 times.
(4) The 100 mean and variance calculations were plotted in the

control charts.

Steps 1–4 were performed using 5, 10, 15, 20, 25, 30, 35, 40,
45 and 50 values using the power calculation method described
above. The results are displayed in Fig. 7.

It was observed that when using a small number of samples,
e.g. 10 a large proportion of the variances and means were within
the control limits (Fig. 7) though they supposed to be above the
upper control limits in both charts. When the number of samples
was increased to 20, only a few results were below the upper
warning limits.

The results showed how the risk of committing a Type II error
(false positive) increased if Nnew was low. One has to balance
the risk of committing Type II errors with a practical number of
spectra in order to choose Nnew. In the present case 20 spectra
seemed sufficient to identify de-mixing.
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ixing experiment de-mixing was clearly identified at 40 min
Fig. 4). Because of the clear indication of a heterogeneous mix-
ure at time point 40 min, the 50 concentration predictions from
ime point 40 min were used for demonstration because they
ere excellent to demonstrate the danger of using too few mea-

urements to detect de-mixing.
First control limits for the variance and the mean chart were

alculated using different values for Nnew from 3 to 50. The
ontrol limits were plotted against Nnew (Fig. 7). As expected
he control limits were wide for small Nnew and narrowed when

new increased. Then the 50 concentration predictions and vari-
nces and means were calculated using different number of
oncentration predictions (Nnew). Example wise for Nnew = 10
he calculations were made in the following manner:
. Conclusions

Two NIR models were developed for monitoring blend homo-
eneity using a NIR probe. First a qualitative model using NAS
alues from a well-mixed batch were used to generate control
harts for future observations. Second a quantitative regression
odel between NAS values and reference concentration was

eveloped for a set of calibration batches. With the regression
odel and well mixed batches, control charts were developed

or the quantitative model. The qualitative method required less
atches to develop and the performance was similar to the quan-
itative model but some other advantages of the quantitative

ethod were presented. The qualitative model is suitable for
nitial R&D studies when developing a new solid dosage form
rug product. When further development activities have been
onducted or prior to implementation in manufacturing supple-
entary calibration batches can be measured and a quantitative
odel developed. Generally the models are easily developed

nd the method and control charts mimics to some degree the
urrent methodologies for determination of blend uniformity
hich makes implementation or replacement of current methods

asier.
In our opinion the proposed methods are better to compare

ixing processes and formulation performance then current
ethods [1]. In current methods two statistics are usually calcu-

ated and used for homogeneity evaluation and batch-to-batch
omparison, i.e. the mean value (c̄) and the relative standard
eviation (R.S.D.%). The R.S.D.% is calculated by dividing
tandard deviation with the mean value (R.S.D.% = 100 × s/c̄).
he R.S.D.% is then dependent on two numbers and there-

ore not a good statistic to do batch-to-batch comparison of
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homogeneity, i.e. different information is mixed up in the statis-
tic. With our proposed NIR methods the comparison is per-
formed with two statistics, i.e. mean concentration and variance
which are independent and both can be directly compared to
the target concentration of the drug product and the variance of
a well-mixed batch. Another aspect of the methods is that the
control limits are based on actual process measurements and is
therefore related to the process capability. In the standard regu-
latory approaches limits are generic limits and do not relate to
the specific formulation or process.

The proposed methods were validated by comparing results
obtained with NIR and with traditional HPLC analysis. The com-
parisons showed that both the qualitative and quantitative NIR
models showed similar results as HPLC.

It was shown how the width of the control limits decreased
when more samples were used and how the risk of committing
a Type II observation error also dropped when the number of
measurements were increased. The result was used to provide
guidance of picking a practical number of measurements.

The influence of the effective sample size on the variance was
demonstrated by comparing NIR variance with HPLC variance.
The NIR variance was approximately 10 times higher then the
HPLC variance because of the small sample size in NIR.

The NIR models and control charts were used for monitor-
ing of a mixing study and evidence was found of de-mixing
after certain duration of mixing. The result showed the neces-
s
m

A

s
T
i
m

References

[1] Uniformity of dosage units, in: U.S. Pharmacopeia (USP), 2003. pp.
2227–2229 (Chapter 905).

[2] F.C. Sánchz, J. Toft, B. Bogaert, D.L. Massart, S.S. Dive, P. Hailey,
Fresenius J. Anal. Chem. 352 (1995) 771–778.

[3] S.S. Sekulic, H.W. Ward, D.R. Brannegan, E.D. Stanley, C.L. Evans, S.T.
Sciavolino, P.A. Hailey, P.K. Aldridge, Anal. Chem. 68 (1996) 509–513.

[4] D.J. Wargo, J.K. Drennen, J. Pharm. Biomed. Anal. 14 (1996)
1415–1423.

[5] P.A. Hailey, P. Doherty, P. Tapsell, T. Oliver, P.K. Aldridge, J. Pharm.
Biomed. Anal. 14 (1996) 551–559.

[6] S.S. Sekulic, J. Wakeman, P. Doherty, P. Hailey, J. Pharm. Biomed.
Anal. 17 (1998) 1285–1309.

[7] R.D. Maesschalck, F.C. Sánchz, D.L. Massart, P. Doherty, Appl. Spec-
trosc. 52 (1998) 725–731.

[8] O. Berntsson, L.-G. Danielsson, M.O. Johansson, S. Folestad, Anal.
Chim. Acta 419 (2000) 45–54.

[9] O. Berntsson, Characterization and application of near infrared spec-
troscopy for quantitative process analysis of powder mixtures, Doctoral
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